

Mehmet Emin Uslu Burcu Kasapoğlu Can Küçük

Bio 417 Neurochemistry Course

Neuron-neuron communication — the synapse

 Neurons use neurotransmitters to communicate

Ionotropic Neurotransmitter Receptors

- Ligand gated ion channels
- Fast neurotransmission
 - Inhibitory

Neurotransmitter causes chloride influx and hyperpolarization

- Excitatory

Neurotransmitter causes sodium influx and depolarization

Metabotropic Neurotransmitter Receptors

- Induction of second messenger systems
 - Receptor coupled to G-protein
 - Activates intracellular enzyme systems to produce an intracellular signal, the second messenger

Slow

neurotransmission – neuromodulation

Summary - Neurotransmission

A comparison of direct and indirect neurotransmitter actions.

Direct neurotransmitter action

Inhibitory synaptic transmission between two neurons.

Acetylcholine indirectly opens potassium channels in cardiac-muscle cells.

Norepinephrine promotes the activation of voltage-dependent calcium channels in cardiac-muscle cells

Neurotransmitter Families

SMALL-MOLECULE NEUROTRANSMITTERS

PEPTIDE NEUROTRANSMITTERS (more than 100 peptides, usually 3-30 amino acids long)

Example: Methionine enkephalin (Tyr-Gly-Gly-Phe-Met)

GABA

- inhibitory NT, discovered by Eugene Roberts in 1950
- predominately in interneurons
- synthesized from glutamate
- GABA receptors:
 - GABA_A: Ionotropic control of a Cl⁻ channel (IPSPs)
 - GABA_B: Metabotropic control of a K⁺ channel (IPSPs)
 - GABA_C: Metabotropic control of a Cl⁻ channel (IPSPs)

- Although GABA is usually termed as an inhibitory neurotransmitter, because the CI- equilibrium (20 vs 110 mM) is more negative than the resting cells, in embryonic neurons the intracellular CI- is increased substantially (80-120 vs 110 mM)
- Thus in embryonic neurons, GABA can cause strong depolarization
- The switch to a "mature" neuron phenotype is mediated by the KCC2 K+ CI- cotransporter which lowers internal CI-

Synthesis of GABA

Neuroscience – *Exploring the Brain* 2nd Edition 2001 by M.F. Bear, B.W. Connors & M.A. Paradiso. Lippincott, Williams & Wilkins, Baltimore MD, USA. ISBN: 0683-30596-4

Enzymes of GABA metabolism

- Glutamic Acid Decarboxylase
- GABA-Transaminase
- Succinic Semialdehyde Dehydrogenase
- GABA synthesis represents a shunt of the TCA cycle
 - 8-10% of glucose carbon is funneled through the GABA shunt

Cartoon of a GABAergic synapse

Regulation of inhibition is important:

Too much - loss of consciousness

Too little - seizures may occur

The GABA-ergic Synapse

GABA receptor heterogeneity

<u>Isoform</u>	<u>Abundance</u>	Location	Pharmacology/property
α1β2γ2	40%	Most brain areas; hippocampal, cortical interneurons, cerebellar Purkinje cells	Common coassembly; BZ-typel; Zn-insensitive
α2β3γ2	15%	Spinal cord motoneurons, hippocampal pyramidal cells	BZ-type II; moderately Zn-sensitive
α3βγ2/3	10%	Cholinergic, monaminergic neurons	BZ-type II, abecarnil-sensitive
α2βγ1	10%	Bergmann glia, thalamus, hypothalamus	BZ inverse agonist-enhanced
α5β3γ2/3	3%	Hippocampal pyramidal cells	BZ-type II, zolpidem-insensitive, moderate Zn-sensitivity
α6βγ2	2%	Cerebellar granule cells	BZ agonist-insensitive, moderate Zn-sensitivity
α6βδ	3%	Cerebellar granule cells	Insensitive to all BZ, GABA high affinity high Zn-sensitivity steroid-insensitive
α4βγ	2%	Cortical, hippocampal pyramidal cells; striatum	BZ agonist-insensitive, low steroid sensitivity
α4β2δ	4%	Thalamus, dentate granule cells	Insensitive to all BZ, GABA high affinity high Zn sensitivity, steroid-insensitive
All other	11%	Throughout CNS	

GABA_A Receptors

- a postsynaptic ionotropic receptor increasing Clconductance across the postsynaptic membrane.
- similar structure to that of the pentameric nAChR receptor

GABA_A Receptor Structure

- Heteropentameric glycoprotein of closely related polypeptides (50-60kDa)
- Each GABA_A receptor subunit contains 4 TMDs with the M2 domain forming the walls of the channel pore
- The amino terminus of each subunit is extracellular and the intracellular loop between TM3 and TM4 contains sites of protein-protein interaction as well as phosphorylation

GABA_A receptors

GABA_A R subunits

- over 20 different GABA_A R subunits cloned
- expression of the subunit isoforms developmentally and regionally controlled.
- properties of GABA receptors depending on the individual subunit isoforms
- differences in gating, regulation and ligand binding to the receptors they form

A

$$30\%$$
 Identity \rightarrow
 10% Identity 10%

Expression of GABA_A receptor subunit mRNAs in selected regions of the embryonic and postnatal rat brain

(*Laurie et al. 1992*)

Distribution of GABA_A Rs on cerebellar granule cells

Nusser et al. J. Neurosci. 18, 1693-1703, 1998

The GABA_A receptor - a target for drug action

Neuroscience – *Exploring the Brain* 2nd Edition 2001 by M.F. Bear, B.W. Connors & M.A. Paradiso. Lippincott, Williams & Wilkins, Baltimore MD, USA. ISBN: 0683-30596-4

Agonists and Antagonists

Agonists

 Structurally similar to neurotransmitter to activate receptor

Antagonists

- blocking receptor
- Diverse structures often unrelated to neurotransmitter

1. Agonist/Antagonist Site

- Muscimol: a naturally occurring GABA analog isolated from the psychoactive mushroom Amanita muscaria and a selective GABA_A agonist
- Bicuculline: a competitive antagonist and a convulsant.

Sinauer Associates, Inc. Feldman Fundamentals of Neuropsychopharmacology Fig. CS10.33-38

2. Picrotoxin site

- Picrotoxin: a noncompetitive GABA antagonist
- a channel blocker, causing a decrease in the mean open time of the channel
- also inhibit some forms of the GlyR

3. Benzodiazepine (BDZ) Site

- GABA binds at the interface between α and β subunits
- BDZs bind at the interface between α and γ subunits
- Anxiolytic, sedative, hypnotic, antiseizure and muscle relaxants
- antagonists or inverse agonists

4. Barbiturate binding site

- examples: phenobarbital or pentobarbital
- sedative-hypnotic, anxiolytic and anti-convulsant effects
- enhanced postsynaptic responses to GABA by increasing the open time of the GABAA receptor channel
- occupancy of this site by barbiturates:
 enhanced ligand binding to GABA and BDZ site and inhibited binding to the picrotoxin site.

5. Steroid hormone binding site

- Endogenously synthesized neurosteroids (mostly glial): progesterone (PREG), pregenolone sulfate (PREGS) and dehydroepiandrosterone sulfate (DHEAS)
- enhanced agonist binding to the GABA_A receptor

Other binding sites on $GABA_A$ R

- Penicillin: inhibition of channel opening
- Ethanol: facilitation to channel opening by binding to specific hydrophobic regions of the GABA_A receptor

GABA_A Receptor Desensitization

desensitization by internalization phosphorylation of GABA receptors by PKC, PKA and several other kinases to alter densensitization phosphorylation effective on gating of the receptor directly

The $GABA_B$ receptor

a 'metabotropic' receptor

a seven transmembrane domain receptor.

located both pre- and post-synaptically.

2 main effects of activating $\mathsf{GABA}_{\mathsf{B}}$ receptors: is close Ca^{2+} channels and open K^+ channels

Ca²⁺ channel closure - inhibition of transmitter release

K⁺ channel opening - slow IPSP

Baclofen: a selective GABA_B receptor **agonist**

2-hydroxy-saclofen: a selective GABA_B receptor **antagonist**

Saclofen

GABA_B Receptors

- First discovered as mechanism for bicuculline-insensitive inhibition of release of other neurotransmitters.
- This effect of GABA could be mimicked by baclofen but not by muscimol

GABA_B Receptor Structure

1) inhibition of adenylate cyclase

2) stimulation of phospholipase A2

3) increase in K+ membrane conductance

4) inhibition of voltagedependent Ca⁺² channels

GABA Transporters

- GABA removal from the synaptic cleft by a sodium dependent transporter with a high affinity for GABA (5-40 uM)
- The vesicular GABA transporter (GAT) dependent on electrical potential across the vesicular membrane

THANK YOU FOR YOUR ATTENTION!