Herbicide Resistant Transgenic Plants

BTCH704 Advances in TR Plant Utilization in Agriculture Prof. ÖKTEM

WHAT ARE WEEDS ? ALL PLANTS IN A CULTIVATED FIELD GIVING HARM RATHER THAN BENEFIT

CROP TYPE	PRODUCTION	LOSSES
CEREALS	433.903	54.349
VEGETABLE	201.691	23.718
FRUIT	66.567	2.462
WNEYARD	50.697	7.909

WORLDWIDE PRODUCTION AND LOSSES DUE TO WEEDS (MILION TONS)

HOW TO CONTROL ? DIFFERENT WAYS TO FIGHT WITH WEEDS

MECHANICAL: HOING, HAND PLUCKING PHYSICAL: HEAT and LIGHT BIOLOGICAL: USE OF LIVING ORGANISM CHEMICAL: USE OF HERBICIDES

Types of Herbicides by Chemical Families

Chemical Family	Affected System	Target Protein	Spectrum
Triazines (atrazine,	Photosystem II,	D-1 protein, product of	Total
ametryne, cyanazine,	electron transport from	<i>psbA</i> gene	
prometryn, simazine)	Q_A to Q_B		
Sulfonylureas,	Amino acid synthesis	Acetolactate synthetase	Selective
imidazolinones,		(ALS)	
triazolopyrimidines			
Aryloxypenoxypropion	Lipid synthesis	Acetyl coenzyme A	Selective
ates (AOPP),		carboxylase (ACCase)	
cyclohexanediones			
Glyphosate (N-	Amino acid synthesis	5-enoylpyruvyl-	Total
phosphonomethyl)glyci		shikimate-3-phosphate	
ne		synthetase (EPSPS)	
Bromoxynil	Photosystem II	D-1 protein	Total
Phenoxycarboxylic	Unknown	Unknown	Selective
acids (eg 2,4-D)			
Glufosinate	Amino acid synthesis	Glutamine synthetase	Total
(Phosphinothricin,		(GS)	
PPT)			
Biprydiliums, praquats,	Photosystem I	Electron transfer	Total
diquats		system	

Dekker and Duke, 1995

Problems in the application of herbicides

- Lack of tolerance to the chemical by one or more of the major world crops, eg rice, maize, soybean, wheat, rapeseed.
- Use of multiple types of herbicides to broaden the spectrum of the affected weeds, which in turn increases the possibility that the crop is injured also.
- Lack of high toxicity to weeds while crops are not affected

What is herbicide resistance in plants?

Herbicide resistance is the ability, trait, or quality of a population of plants within a species or larger taxon, or of plant cells in culture, to withstand a particular herbicide at a dosage that is substantially greater than the wild type of that plant is able to withstand, with a near normal life cycle.

Types of herbicide resistance

- Exclusionary resistance mechanisms
 - Herbicide uptake
 - Translocation
 - Compartmentation
 - Metabolic detoxification
- Altered molecular/cellular target of herbicide action
- Site of action overproduction

WHY HERBICIDE RESISTANT PLANTS ?

SELECTIVITY OF A HERBICIDE IS AN IMPORTANT CRITERIA

TOTAL HERBICIDES, WHEN APPLIED, KILLS ALL THE PLANTS IN THE FIELD INCLUDING CULTURE PLANT

What is the advantage of herbicide resistant plants?

WHAT TYPES OF STRATEGIES TO DEVELOP HERBICIDE RESISTANT PLANTS ?

A. CONVENTIONAL: Seed coating etc.

B. MOLECULAR APPROACH

 Modification of Target Protein
 Over Production of Target Protein
 Detoxification of Active Ingredient
 Production of Antibodies Against Active Ingredient

Some strains of *Streptomyces* produces a tripeptide antibiotic

BIALAPHOS

 $\left[L-PPT-(L-Alanine)_2 \right]$

By endopeptidase activity BIALAPHOS is hydrolyzed and produce free **L-PPT**

L-PPT is an inhibitor of

GLUTAMIME SYNTHASE (CS)

□ WHY microorganisms produce PAT enzyme ?

To protect themselves from the toxic effect of PPT

WHICH microorganisms produce PAT enzyme?

	Streptomyces hygroscopius		Streptomyces viridochromogenes
Gene:	bar (560 bp)	87% homology	pat (560 bp)
Protein Product:	BAR	85% homology	PAT
Structure Info:	183 ล.ล.		183 a.a.
M.W.(from a.a. sequece) (SDS-PAGE) (Native-PAGE)	20.6 kD 22-23 kD 41.0 KD (1	HOMODIMER)	20.6 22-23 kD 41.0 kD

GLUTAMME SYNTHASE : Key enzyme for ammonium assimilation

HOW TO DEVELOP PPT RESISTANT TR PLANTS

HOW TO DEVELOP PPT RESISTANT TR PLANTS

HOW TO DEVELOP PPT RESISTANT TR PLANTS

ROOT GENERATION IN SELECTIVE MEDIA

I

N

E

LBA:pDHB

LB5-1:pGKB5

MEDIA COMPOSITION

MEDIA COMPOSITION

21

EFFECT OF 1 % BASTA TREATMEN ON CONTROL PLANTS

DAYS AFTER TREATMENT

EFFECT OF BASTA TREATMENT ON PLANT DEVELOPMENT

D A Y S I N S 0 I L

40

96

BASTA 1% (V/V) TREAMENT

SDS-PAGE for detection of PAT

- Lane 1: Molecular weight standards
- Lane 2, 6: Control
- Lane 3, 7: LP_3F_3A
- Lane 4, 8: $LP_3F_3B_1$
- Lane 5, 9: $LP_3F_3B_2$
- SDS-PAGE analysis of PAT showed a MW of 22-23 kD

F1 Transgenics

Analysis of F2 Progeny

LP₃-F2-B

F1 Plantlets

HERBICIDE RESISTANT TR TOBACCO

1200

EmuPAT, Fo

1% BASTA-14 days post application

3% BASTA application DAY 1 **30 days post application**

Inducible cross-tolerance to herbicides in transgenic potato plants with the rat CYP1A1 gene

Yamada et al., Theor.Appl.Genet. 2002

Introduction

- The residues of agrochemicals affect ecosystem and result in the pollution of crops
- Development of a system of rapid degradation in the agricultural environment after use
- Cytochrome P450 monooxygenases in higher plants play an important role in the oxidative metabolism of xenobiotics as well as endogenous substrates
- In several plants these enzymes are found to be important in the metabolism of agrochemicals such as several herbicides
- However, more information is available about the P450 dependent monooxygenases in the mammalian liver than in the plants

Introduction

- The xenobiotic metabolizing P450 cDNAs derived from mammals confer on several TR plants a high level of tolerance to many herbicides
- Pathogenesis related 1a (PR1a) protein in tobacco is induced upon pathogen attack and chemical treatment with SA and INA, as wel as benzothiadiazole (BTH)

Non-phytotoxic plant protection agent

BTH activates a number of systemic acquired resistance (SAR) genes including PR1A in tobacco, Arabidopsis and wheat

Aim of the Study

- To generate TR potato plants harboring rat P4501A1 (CYP1A1) cDNA with a tobacco PR1a promoter and to control the expression of transgenes artificially by BTH treatment if necessary
- To transfer CYP1A1 cDNA fused with yeast P450 reductase (YR)
- To examine the transgenic plants for their ability to detoxify several herbicides

Materials and Methods

Plasmid Contruction

Materials and Methods

Plant Transformation

- Microtubers of Solanum tuberosum cv May Queen
- Agrobacterium tumefaciens strain LBA4404
- \sim Plant selection \rightarrow kanamycin resistance
- PCR
- Southern blotting
- Western blotting
- Southern blotting
- In vivo herbicide tolerance test

57 PR1A1 containing TR plant 88 PRT1A1 containing TR plant 85 PRTYR containing TR plants

Selected by PCR

→For each group 4 highly tolerant TR plants were selected with BTH and chlortoluron

P450 species	Promoter	Expression plasmid	Selected plants
Rat CYP1A1	PR1a	pPR1A1	P2562, P2576, P2577, P2586
Rat CYP1A1	PRT	pPRT1A1	T2432, T2434, T2437, T2500
Rat CYP1A1/YR	PRT	pPRTYR	F2355, F2365, F2371, F2384

Southern-Blotting Analysis

GUS Activity

GUS activity increased 3 days after the BTH treatment and reached to max at 10 days

3.0 μ mol/pot BTH

Western-Blotting Analysis

- The microsomal proteins were isolated from the leaves 7 day after the BTH treatment
- Without BTH treatment no protein band was detected in TR plants
- With BTH, bands corresponding to rat CYP1A1 or its fused enzyme were observed in all TR plants
- Low level of accumulation of CYP1A1 fused with YR protein

 \mathbf{C}

Northern–Blotting Analysis

In vivo Herbicide Tolerance Test

The herbicides chlortoluron, methabenzthiazuron and norflurozan were sprayed onto leaves in the TR and control plants 7 day after BTH treatment

Plant bnes	nes Chlortoluron		Methabenzthiazuron		Norfarazon	
	Non-BIH	BTH	Non-BTH	BIH	Non-BIH	BIH
P2577 T2432 F2355	Plants died Plants died Plants died	No demage No demage No demage	Slightly damage Plants died Plants died	No damage No damage No damage	Chlorosis Chlorosis Chlorosis	Chlorosis. Chlorosis. Chlorosis

Discussion

- The transgenes under the control of PR1a and PRT promoter were easily induced by BTH treatment
- GUS activity had increased after 3 days of BTH application
- BTH application efficiently led to the expression of CYP1A1 and its fused genes
- mRNA of CYP1A1 and its fused gene with YR were induced in the TR plants treated with BTH, and did not reached max level even after 15 days, indicating the absence of feedback inhibition

Discussion

- Although having a lower level of accumulation of CYP1A1 and its fused protein, F2355 showed a high tolerance to chlortoluron and methabenzthiazuron in the same way as P2577 and T2432; suggesting that CYP1A1 fused enzyme with YR shows a higher specific activity than CYP1A1 alone
- All TR plants could be efficiently detoxify chlortoluron and methabenzthiazuron, but they developed chlorosis around the leaf vein upon norflorazon application, indicating that rat CYP1A1 could not metabolize this herbicide sufficiently.